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1. Introduction

Our understanding of non perturbative effects in four dimensional supersymmetric gauge

theories (SYM) has dramatically improved in recent years. This is due mainly to the ob-

servation that integrals over the moduli space of gauge connections localize around a finite

number of points [1]. These techniques have been applied to the study of multi-instanton

corrections to N = 1, 2, 4 supersymmetric gauge theories in R4 [2 – 10] (see [11, 12] for

reviews of multi-instanton techniques before localization and complete lists of references).

In the D-brane language language, the dynamics of the gauge theory around the instanton

background is described by an effective theory governing the interactions of the lowest

energy excitations of open strings ending on a bound state of Dp-D(p+4) branes. For the

case of N = 2, 4 SYM the multi-instanton action has been derived via string techniques

in [13, 14].

In [15], D-brane techniques have been applied to the computation of the Affleck, Dine

and Seiberg (ADS) superpotential [16, 17] for N = 1 SQCD with gauge group SU(Nc)

and Nf = Nc − 1 massless flavours and Sp(2Nc) with 2Nf = 2Nc flavours. The N = 1

gauge theory is realized on the four-dimensional intersection of Nc coloured and Nf flavour
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D6 branes. Chiral matter comes from strings connecting the flavor and color D6 branes.

Instantons in the U(Nc) gauge theory are realized in terms of ED2 branes parallel to the

stack of Nc D6-branes. By carefully integrating the supermoduli (massless strings with at

least one end on the ED2) the precise form of the ADS superpotential was reproduced in

the low energy, field theory limit α′ → 0. In the recent literature ED2-brane instantons

in intersecting D6-brane models have received particular attention in connection with the

possibility of generating a Majorana mass for right handed neutrinos and their superpart-

ners [18 – 22]. The field theory interpretation of this new instanton effect is far from clear

and it is the subject of active investigation. In this paper we present a detailed derivation of

these new non perturbative superpotentials in N = 1 Z3-orientifold models. Investigations

of stringy instantons on N = 1 Z2 × Z2 orientifold singularities appeared recently in [23].

We study SYM gauge theories living on D3 branes located at a Z3-orientifold singu-

larity. There are two choices for the orientifold projection [24 – 28] realized by two types

of O3-planes.1 They lead to anomaly free2 chiral N = 1 gauge theories with gauge groups

SO(N − 4) × U(N) or Sp(N + 4) × U(N) and three generations of chiral matter in the

bifundamental and anti/symmetric representation of U(N). The archetype of this class

can be realized as a stack of 3N + 4 D3-branes and one O3−-plane sitting on top of anR6/Z3 singularity. This system can be thought of as a T-dual local description (near the

origin) of the T 6/Z3 type I string vacuum found in [40]. The lowest choices of N lead to

U(4) or U(5) gauge theories with three generations of chiral matter in the 6 and 10 + 5∗

that are clearly of phenomenological interest in unification scenarios [45 – 48].3

In [49] the U(4) case was studied and the form of the ADS-like superpotential was

determined combining holomorphicity, U(1) anomaly, dimensional analysis and flavour

symmetry. Stringy instanton effects were also considered. Very much as for worldsheet

instantons in heterotic strings [50 – 54], these genuinely stringy instantons give rise to su-

perpotentials that do not vanish at large VEV’s of the open string (charged) ‘moduli’.

Here we derive the non-perturbative superpotentials from a direct integration over

the D-instanton super-moduli space. Gauge instantons are described in terms of open

strings ending on D(-1) branes while stringy instantons are given by open strings end-

ing on euclidean ED3 branes wrapping a four cycle inside the Calabi Yau . The open

strings connecting the stack of D3 branes to D(-1) and ED3 branes have four and eight

mixed Neumann-Dirichelet directions respectively. This ensures that the bound state is

supersymmetric. The superpotential receives contribution from disk, one-loop annulus

and Möbius amplitudes ending on the D(-1) or ED3 branes. We find that ADS super-

potentials are generated only for two gauge theory choices U(4) and Sp(6) × U(2) inside

the Z3-orientifold class. Stringy instantons leads to Majorana masses in the U(4) case,

Yukawa couplings in the U(6) × SO(2) gauge theory and non-renormalizable couplings for

1We will only consider O3±-planes, not the more exotic fO3
±

-planes [29 – 31].
2Factorizable U(1) anomalies are cancelled by a generalization of the Green-Schwarz mechanism [32 –

38, 37] that may require the introduction of generalized Chern-Simons couplings [39].
3Only the U(4) case can be realized in the compact Z3 orientifold. In general the Chan-Paton group is

SO(8− 2n) ×U(12− 2n) ×Hn where Hn = U(n)3, SO(2n), U(n), U(1)n depending on the choice of Wilson

lines [28, 41 – 44].
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U(2N + 4) × SO(2N) gauge theories with N > 3.

The plan of the paper is as follows.

In section 2 we review the gauge theories coming from a stack of D3 branes at a C3/Z3

orientifold singularity. In section 3 we consider non-perturbative effects generated by D(-

1) gauge instantons, corresponding to ADS-like superpotential in the low energy limit. A

detailed analysis of one-loop vacuum amplitudes and the integrals over the supermoduli is

presented for SYM theories with gauge groups Sp(6) × U(2) and U(4). In section 5, we

consider stringy instanton effects generated by ED3-branes. Once again a detailed analysis

of the the one-loop string amplitudes and the integrals over the supermoduli is presented.

In section 6 we present a “complete” list of N = 1 SYM theories with matter in the adjoint,

fundamental, symmetric and antisymmetric representation of the gauge groups (U, SO, Sp)

which exhibit a non perturbatively generated ADS superpotential.

We conclude with some comments and directions for future investigation in section 7.

2. The Gauge theory

The low energy dynamics of the open strings living on a stack of N D3-branes in flat space

is described by a N = 4 U(N) SYM gauge theory. In the N = 1 language the fields are

grouped into a vector multiplet V = (Aµ, λα, λ̄α̇) and 3 chiral multiplets ΦI = (φI , ψI
α),

I = 1, 2, 3 , all in the adjoint of the gauge group.

We consider the D3-brane system at a R6/Z3 singularity. At the singularity the N

D3-branes group into stacks of Nn fractional branes with n = 0, 1, 2 labelling the conjugacy

classes of Z3. The gauge group U(N) decomposes as
∏

n U(Nn). More precisely, denoting

by γ
θ,N

the projective embedding of the orbifold group element θ ∈ Z3 in the Chan-Paton

group and imposing γ3
θ,N

= 1 and γ†
θ,N

= γ−1
θ,N

one can write

γ
θh,N

= (1
N0×N̄0

, ωh 1
N1×N̄1

, ω̄h 1
N2×N̄2

) (2.1)

with N =
∑

n Nn. The resulting gauge theory can be found by projecting the N = 4 U(N)

gauge theory under the Z3 orbifold group action:

V → γ
θ,N

V γ−1
θ,N

ΦI → ω γ
θ,N

ΦI γ−1
θ,N

ω = e2πi/3 (2.2)

Keeping only invariant components under (2.2) one finds the N = 1 quiver gauge theory

V : N0N̄0 + N1N̄1 + N2N̄2

ΦI : 3 ×
[

N0N̄1 + N1N̄2 + N2N̄0

]

(2.3)

with gauge group
∏

n U(Nn) and three generations of bifundamentals. More precisely V

and ΦI are N × N block matrices (N =
∑

n Nn) with non trivial Nn × N̄m blocks given

by (2.3). Under Z3 a block Nn × N̄m transform as ωn−m. These non-trivial transformation

properties are compensated by the space-time eigenvalues of the corresponding field (ω0

for V and ω for ΦI ) making the corresponding component invariant under Z3.
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Next we consider the effect of introducing an O3±-plane. Woldsheet parity Ω flips

open string orientations and act on Chan-Paton indices as Nn ↔ N̄−n where subscripts are

always understood mod 3. This prescription leads to

Ω : N0 ↔ N̄0 N1 ↔ N̄2 (2.4)

The choices of O3±-planes correspond to keep states with eigenvalues Ω = ±1 and lead to

symplectic or orthogonal gauge groups.4

We start by considering the O3− case. Keeping Ω = − components from (2.3) one

finds

V :
1

2
N0(N0 − 1) + N1N̄1

ΦI : 3 ×

[

N0N̄1 +
1

2
N1(N1 − 1)

]

(2.5)

This follows from (2.3) after identifying the mirror images N̄0 = N0, N̄2 = N1, and anti-

symmetrizing the resulting block matrix. (2.5) describes the field content of a N = 1 SYM

with gauge group SO(N0) × U(N1) and three chiral multiplets in the

[

( , ¯) + (•, )

]

.

For general N0, N1 the U(N1) gauge theory is anomalous. The anomaly is a signal

of the presence of a twisted RR tadpole [34, 35]. Focusing on a local description near

the orientifold singularity one can relax the global tadpole cancellation condition [55, 56].

These models can be thought of as local descriptions of a more complicated Calabi Yau

near a Z3 sigularity. Cancellation of the twisted RR tadpole can be written as [40]

tr γ
θ,N

= −4 ⇒ N0 = N1 − 4 (2.6)

and ensures the cancellation of the irreducible four-dimensional anomaly

I(F ) ∼ [−N0 + (N1 − 4)] tr F 3 = 0 (2.7)

Finally the running of the gauge coupling constants is governed by the β functions with

one-loop coefficients5

β0 = 3 ℓ

(

1

2
N0(N0 − 1)

)

− 3N1 ℓ(N0)

=
3

2
(N0 − N1 − 2) = −9 (IR free)

β1 = 3 ℓ(N1N̄1) − 3N0 ℓ(N̄1) − 3 ℓ

(

1

2
N1(N1 − 1)

)

=
3

2
(−N0 + N1 + 2) = +9 (UV free) (2.8)

4In the compact case, realized in terms of D9-branes and O9-plane on T 6/Z3, the orthogonal choice is

dictated by global tadpole cancellation. Turning on a quantized NS-NS antisymmetric tensor [28, 41, 29]

leads to symplectic groups.
5Here trRT aT b = ℓ(R), i.e. ℓ(N) = 1

2
, ℓ(NN̄) = N and ℓ(1

2
N(N ± 1)) = 1

2
(N ± 2).

– 4 –



J
H
E
P
0
7
(
2
0
0
7
)
0
3
8

with βn refering to the nth-gauge group. The last equalities arise after imposing the

anomaly cancellation (2.6). As expected, β0 + β1 = 0 since the ten-dimensional dilaton

does not run.

The case Ω = + works in a similar way. The resulting N = 1 quiver has gauge group

Sp(N0)×U(N1) and three chiral multiplets in the [( , ¯) + (•, )]. The U(N1) is anomaly

free for N0 = N1 + 4 and the one-loop β function coefficients are given by β0 = +9 (UV

free) and β1 = −9 (IR free).

3. D(-1) Instantons

There are two sources of supersymmetric instanton corrections in the D3 brane gauge

theory: D(-1)-instantons and Euclidean ED3-branes wrapping four cycles on T 6/Z3. Both

are point-like configurations in the space-time and can be thought of as D(-1)-D3 and ED3-

D3 bound states with four and eight directions with mixed Neumann-Dirichlet boundary

conditions.

3.1 D3-D(-1) in flat space

Gauge instantons in SYM can be efficiently described in terms of D(-1)-branes living on the

world-volume of D3-branes [57]. As before, we start from the N = 4 case: a bound state of

N D3 and k D(-1) branes in flat space. In this formalism, instanton moduli are described

by the lowest energy modes of open strings with at least one end on the D(-1)-brane

stack. The gauge theory dynamics, around the instanton background, can be described in

terms of the U(k) × U(N) 0-dimensional matrix theory living on the D-instanton world-

volume. In particular, the ADHM constraints [58], defining the moduli space of self-dual

YM connections, follow from the F- and D- flatness condition in the matrix theory [57].

The instanton moduli space is given by the D(-1)D3 field content

(aµ, θA
α , χa,D

c, θ̄Aα̇) kk̄

(wα̇, νA) kN̄

(w̄α̇, ν̄A) Nk̄ (3.1)

with µ = 1, . . . , 4, α, α̇ = 1, 2 (vector/spinor indices of SO(4)), a = 1, . . . , 6, A = 1, . . . , 4

(vector/spinor indices of SO(6)R), c = 1, . . . , 3. The matrices aµ, χa describe the positions

of the instanton in the directions parallel and perpendicular to the D3-brane respectively,

wα is given by the NS open D3-D(-1) string (instanton sizes and orientations), Dc are

auxiliary fields and θA
α , θ̄Aα̇, νA are the fermionic superpartners.

The D3-D(-1) action can be written as [59]

Sk,N = trk

[

1

g2
0

SG + SK + SD

]

(3.2)

with

SG = −[χa, χb]
2 + iθ̄α̇A[χ†

AB , θ̄α̇
B] − DcDc (3.3)

SK = −[χa, aµ]2 + χaw̄
α̇wα̇χa − iθαA[χABθB

α ] + 2iχAB ν̄AνB

SD = i
(

−[aαα̇, θαA] + ν̄Awα̇ + w̄α̇νA
)

θ̄α̇
A + Dc

(

w̄σcw − iη̄c
µν [aµ, aν ]

)

– 5 –
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with χAB ≡ 1
2T

a
ABχa, T

a
AB = (ηc

AB , iη̄c
AB) given in terms of the t’Hooft symbols and g2

0 =

4π(4π2α′)−2 gs. The action (3.3) follows from the dimensional reduction of the D5-D9

action in six dimensions down to zero dimension. As a consequence, our subsequent results

hold up to some computable non vanishing numerical constant.

In the presence of a v.e.v., for the six U(N) scalars ϕa in the D3-D3 open string sector,

we must add to Sk,N

Sϕ = trk

[

w̄α̇(ϕaϕa + 2χaϕa)wα̇ + 2iν̄AϕABνB
]

(3.4)

The multi-instanton partition function is

Zk,N =

∫

M

e−Sk,N−Sϕ =
1

Vol U(k)

∫

M

dχ dD da dθ dθ̄dw dν e−Sk,N−Sϕ

In the limit g0 ∼ (α′)−1 → ∞, gravity decouples from the gauge theory and the contri-

butions coming from SG are suppressed. The fields θ̄α̇A, Dc become Lagrange multipliers

implementing the super ADHM constraints

θ̄α̇A : ν̄Awα̇ + w̄α̇νA − [aαα̇, θαA] = 0

Dc : w̄σcw − iη̄c
µν [aµ, aν ] = 0 (3.5)

3.2 D(-1)-D3 at the C3/Z3-orientifold

Let us now consider in turn the Ω and then the Z3 projection.

The effect of introducing an O3±-plane in the D(-1)-D3 system corresponds to keep

open string states with eigenvalue ΩI = ±. Ω is the worldsheet parity and I is a reflection

along the Neumann-Dirichlet directions of the Dp-O3 system [8]. On D(-1) string modes,

I acts as a reflection in the spacetime plane

I : aµ → −aµ θA
α → −θA

α (3.6)

leaving all other moduli invariant. In addition, consistency with the D3-O3 projection

requires that the D(-1) strings are projected in the opposite way with respect to the D3-

branes [60] . From the gauge theory point of view, this corresponds to the well known fact

that SO(N) and Sp(N) gauge instantons have ADHM constraints invariant under Sp(k)

and SO(k) respectively.

We start by considering the O3− case. After the ΩI projection the surviving fields are

(aµ, θA
α )

1

2
k(k − 1)

(Dc, χI , χ̄I , θ̄Aα̇)
1

2
k(k + 1)

(wα̇, ν) kN . (3.7)

Since we are dealing with a SO(N) gauge theory, the Dc moduli are projected in the adjoint

of Sp(k). This is also the case for all the other moduli even under I, while the odd ones,

(aµ, θA
α ), turn out to be antisymmetric.

– 6 –
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Let us now consider the Z3 projection. Out of the six χa one can form three complex

fields χI with eigenvalues ω under Z3 and their conjugate χ̄I . To embed the Z3 projection

into SU(4) we decompose the spinor index A = (0, I), with I = 1, . . . , 3 and the zeroth

direction along the surviving N = 1 supersymmetry. The D3 and D(-1) gauge groups,

SO(N) and Sp(k), break into SO(N0)×U(N1) and Sp(k0)×U(k1) respectively. N0 (k0) is

the number of fractional D3 (D(-1)) branes invariant under Z3 and N1 (k1) are the branes

transforming with eigenvalue ω. More precisely, the projective embedding of the Z3 basic

orbifold group element θ in the Chan-Paton group can be written

γ
θh,N

= (1
N0×N0

, ωh 1
N1×N̄1

, ω̄h 1
N̄1×N1

)

γ
θh,k

= (1
k0×k0

, ωh 1
k1×k̄1

, ω̄h 1
k̄1×k1

) (3.8)

After projecting under Z3, the symmetric/antisymmetric matrices in (3.7) break into km×

k̄n, km × N̄n or Nm × k̄n, each transforming with eigenvalue ωm−n. In addition fields with

up(down) index I transform like ω(ω̄). Keeping only the invariant components one finds

(aµ; θ0
α)

1

2
k0(k0 − 1) + k1k̄1

θI
α

1

2
k1(k1 − 1) + k0k̄1

(Dc; θ̄0α̇)
1

2
k0(k0 + 1) + k1k̄1

(χ̄I ; θ̄Iα̇)
1

2
k̄1(k̄1 + 1) + k0k1

χI 1

2
k1(k1 + 1) + k0k̄1

(wα̇; ν0) k0N0 + k1N̄1 + k̄1N1

νI k0N̄1 + k̄1N0 + k1N1 (3.9)

Notice that the Z3 eigenvalues of the Chan-Paton indices in the r.h.s. of (3.9) compensate

for those of the moduli in the l.h.s., making the field invariant under Z3. In addition

(odd)even components under I are (anti)symmetrized ensuring the invariance under ΩI.

The multi-instanton action follows from that of N = N0 + 2N1 D3 branes and k =

k0 + 2k1 D(-1) instanton in flat space (3.2) with U(N) and U(k) matrices restricted to the

invariant blocks (3.9).

The results for O3+ can be read off from (3.9) by exchanging symmetric and antisym-

metric representations.

4. ADS-like superpotential

4.1 D3-D(-1) one-loop vacuum amplitudes

Non-perturbative superpotentials can be computed from the instanton moduli space inte-

gral [11, 13, 18]

SW = e〈1〉D+〈1〉A+〈1〉M µβnkn

∫

M

e−Sk,N−Sϕ (4.1)

– 7 –
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The integration is over the instanton moduli space, M, 〈1〉D is the disk amplitude and

〈1〉A,M are the one-loop vacuum amplitudes with at least one end on the D(-1)-instanton.

The factor µβnkn , µ being the energy scale, comes from the quadratic fluctuations around

the instanton background and as we will see it combines with a similar contribution coming

from the moduli measure to give a dimensionless SW .

The terms in front of the integral in (4.1) combine into

SW = Λβnkn

∫

M

e−Sk,N−Sϕ (4.2)

with

Λknβn = e2πiknτn(µ) µβnkn τn(µ) = τn −
βn

2πi
ln

µ

µ0
(4.3)

the one-loop renormalization group invariant and the running coupling constant. τn refers

to the complexified coupling constant of the nth gauge group. µ0 is a reference scale.

More precisely, the disk amplitude and one-loop amplitudes yield

e〈1〉D = e2πiknτn τn =
θn

2π
+

4πi

g2
n

e〈1〉A+〈1〉M =

(

µ

µ0

)−βnκn

+ . . . (4.4)

with dots refering to threshold corrections that will not be considered here.

To verify (4.4) we should compute the following one-loop amplitudes

〈1〉A = −

∫ µ

µ0

dt

t

1

12
Tr[(1 + (−)F )(1 + θ + θ2) qL0−a]

= −

∫ µ

µ0

dt

t
AD(−1)D3 = −A0,D(−1)D3 ln

µ

µ0
+ . . .

〈1〉M = −

∫ µ

µ0

dt

t

1

12
Tr[ΩI (1 + (−)F )(1 + θ + θ2) qL0−a]

= −

∫ µ

µ0

dt

t
MD(−1) = −M0,D(−1) ln

µ

µ0
+ . . . (4.5)

In the above formula µ enters as a UV regulator in the open string channel (see [61] for

details) and A0,M0 are the massless contributions to the amplitudes.

We start by considering the O3− projection. It is important to notice that only the

annulus with one end on the D(-1) and one on the D3 contributes to these amplitudes. In

fact, D(-1)-D(-1) amplitudes cancel due to the Riemann identity. Finally one finds

AD(−1),D3 =
4

12
trγθ,ktrγθ,N

∑

α,β

cαβ
η3

ϑ[αβ ]

ϑ[
α+ 1

2

β ]2

ϑ[01
2

]2

3
∏

i=1

ϑ[αβ+hi
]

ϑ̂[
1

2

1

2
+hi

]

=
3

2
(k0 − k1)(N0 − N1) + . . .

MD(−1) =
2

12
trγθ2,k

∑

α,β

cαβ
η3

ϑ[αβ ]

ϑ[α
β+ 1

2

]2

ϑ̂[
1

2

0 ]2

3
∏

i=1

ϑ[αβ+hi
]

ϑ̂[
1

2

1

2
+hi

]

= −3(k0 − k1) + . . . (4.6)

– 8 –
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The sum runs over the even spin structures and cαβ = (−)2(α+β). The term η3

ϑ[α
β
] comes from

the (b, c) and (β, γ) ghosts while the extra five thetas in the numerator and denominator

describe the contributions of the ten fermionic and bosonic worldsheet degrees of freedom.

We adopt the shorthand notation ϑ̂[
1

2

h ] ≡ ϑ[
1

2

h ]/(2 cos πh) to describe the massive contribu-

tion of a periodic boson to the partition function. hi = (1
3 , 1

3 ,−2
3) denote the Z3-twists

while the extra 1
2 -shifts in the annulus account for the D(-1)-D3 open string twist along

Neuman-Dirichlet directions while 1
2 twists in the Möbius come from the I-projection. In

addition we used the fact that the contribution of the unprojected sector is zero after using

the Riemann identity while that of the θ- and θ2-projected sectors are identical explaining

the overall factor of 2. The extra factor of 2 in the annulus comes from the two orientations

of the string. The second line displays the massless contributions. We use the Chan Paton

traces

trγ1,k = k0 + 2k1 trγθ,k = k0 − k1

trγ1,N = N0 + 2N1 trγθ,N = N0 − N1 (4.7)

which follow from (2.1) and the first few terms in the theta expansions

ϑ[0h] = 1 + q
1

2 2 cos 2πh + . . . ϑ[
1

2

h ] = q
1

8 2 cos πh + . . .

η = q
1

24 + . . . (4.8)

From (4.6) one finds

A0 + M0 =
3

2
(k0 − k1)(N0 − N1 − 2) = knβn (4.9)

with βn the one-loop β coefficients given in (2.8). Plugging (4.9) into (4.5) results into (4.4).

The fact that the β function coefficients are reproduced by the instanton vacuum amplitudes

is a nice test of the instanton field content (3.9).

Now let us determine the dependence of the instanton measure on the string scale

Ms ∼ α′ −1/2. The scaling of the various instanton moduli follows from (3.3):

D, g0 ∼ M2
s χa, ϕa ∼ Ms wα̇, aµ ∼ M−1

s

νA, θA
α ∼ M−1/2

s θ̄Aα̇ ∼ M3/2
s (4.10)

Collecting from (3.9) the number of components of the various moduli entering in the

instanton measure one finds6

∫

M

e−Sk,N−Sϕ ∼ M−βnkn
s

knβn = −2nD − nχ + na + nw +
3

2
nθ̄ −

1

2
nθ −

1

2
nν

=
3

2
(k0 − k1)(N0 − N1 − 2) (4.11)

6We recall that fermionic differentials scale as the inverse of the dimension of the fermion itself. This

explains the extra minus sign in (4.11).
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Notice that this factor precisely combines with that in (4.2) leading to a dimensionless SW

as expected. This simple dimensional analysis can be used to determine the form of the

allowed ADS superpotentials in the gauge theory. A superpotential is generated if and only

if the integral over the instanton moduli space reduces to an integral over xµ
0 describing

the center of the instanton and θα its superpartner. More precisely

SW = Λknβn

∫

M

e−Sk,N−Sϕ = c

∫

d4x0d
2θ

Λknβn

ϕknβn−3
(4.12)

where c is a numerical constant. Whether c is zero or not depends on the presence or not

of extra fermionic zero modes besides θ. Notice that the power of ϕ is completely fixed

requiring that SW is dimensionless. The precise form of the superpotential requires the

evaluation of the moduli space integral and will be the subject of the next section. The

superpotential follows from (4.12) after promoting ϕI to the chiral superfield ΦI and x0, θα

to the measure of the superspace

SW = c

∫

d4xd2θ
Λknβn

Φknβn−3
(4.13)

A superpotential of type (4.13) is generated whenever [63, 64, 16, 17]

〈λ2 ϕknβn−3〉 6= 0 (4.14)

Each scalar ϕ soaks two fermionic zero-modes and each gaugino λ one zero mode.7 The

condition (4.14) translates into

dimMF = 2knβn − 4 (4.15)

with dimMF the fermionic dimension of the instanton super-moduli space. The number of

fermionic zero modes can be read off from (3.9)

dimMF = nθ + nν − nθ̄

= k0(3N1 + N0 − 2) + k1[2N1 + 3(N0 + N1 − 2)]

= k0(4N0 + 10) + k1(8N0 + 14) (4.16)

where we used the fact that θ̄α̇A plays the role of a Lagrangian multiplier imposing the

fermionic ADHM constraint and therefore subtracts degrees of freedom. The last line

in (4.16) follows from using the anomaly cancellation condition N1 = N0 + 4. The re-

sult (4.16) is consistent with the Atiyah-Singer index theorem that states

dimMF = 2k0

[

ℓ

(

1

2
N0(N0 − 1)

)

+ 3N1ℓ(N0)

]

+2k1

[

ℓ(N1N̄1) + 3N0ℓ(N1) + 3ℓ

(

1

2
N1(N1 − 1)

)]

= k0(3N1 + N0 − 2) + k1[2N1 + 3(N0 + N1 − 2)] (4.17)

7This can be seen by explicitly solving the equations of motion of the gaugino and the ϕ-field in the

instanton background [59]. In particular the source for the scalar field comes from the Yukawa coupling

LYuk = gYMϕ†ψλ in the gauge theory action.
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Combining (4.15) and (4.16) one finds

N0 =
k1 − 7k0 − 1

k0 + 2k1
(4.18)

One can easily see that the only non-negative solution for N0 is

N0 = 0 k0 = 0 k1 = 1

We conclude that in the class of U(N0 + 4) × SO(N0) SYM theories describing the low-

energy dynamics of D3-branes on the Z3 orientifold only the U(4) theory with three chiral

multiplets in the antisymmetric leads to an ADS-like superpotential generated by gauge

instantons.

The counting can be easily repeated for the Sp(N1 + 4) × U(N1) cases by exchanging

symmetric and antisymmetric representations in (3.9) as required by the presence of the

O3+-plane. The results are

knβn = 9(k0 − k1)

dimMF = k0(4N1 + 6) + k1(8N1 + 18)

N1 =
3k0 − 9k1 − 1

k0 + 2k1
(4.19)

One can easily see that the only non-negative solution is

N1 = 2 k0 = 1 k1 = 0

We conclude that in this class, only the gauge theory Sp(6) × U(2) with three chiral

multiplets in the ( , ¯)+(•, ) admits an ADS-like superpotential generated by instantons.

The aim of the rest of this section is to compute SW . The integral (4.12) will be

evaluated for the Sp(6) × U(2) and U(4) cases in the following.

4.2 Sp(6) × U(2) superpotential

We first consider the O3+ case, i.e. the Sp(6)×U(2) gauge theory with three chiral multi-

plets in the [(6, 2̄) + (1,3)]. The instanton moduli is given by (3.9) after flipping symmet-

ric/antisymmetric representations in order to deal with the symplectic projection. Plugging

k0 = 1, k1 = 0, N0 = 6, N1 = 2 into (3.9) one finds the surviving fields

aµ, wα̇
u0

, θ0
α, ν0u0, νIu1 (4.20)

with u0 = 1, ..6, and u1 = 1, 2. In this section, for notational convenience, subscripts

and superscripts indices u0, u1 will be switched. in this section for notational convenience

as we will momentarily see. In particular both θ̄0α̇ and Dc are projected out (the D(-1)

“gauge” group is O(1) ≈ Z2 in this case) and therefore no ADHM constraint survives. The

instanton action reduces then to

S = SK + Sϕ = wu0

α̇ ϕ̄Iu0u1
ϕI u1v0wα̇

v0
+ νIu1ν0u0ϕ̄Iu0u1

(4.21)
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Here and below we omit numerical coefficients that can be always reabsorbed at the end

in the definition of the scale. The integrations over wα̇
u0

, ν0
u0

, νI
u1

are gaussian and the final

result, up to a non vanishing numerical constant, can be written as

SW = Λ9

∫

d4ad2θ
det6×6 (ϕ̄Iu1,u0

)

det6×6 (ϕ̄Iu1,u0
ϕIu1,v0)

=

∫

d4ad2θ
Λ9

det6×6 (ϕIu1,u0)
(4.22)

where we have exploited the possibility of combining I and u1 in one ‘bi-index’ Iu1 so as

to get a range of six values. For the sake of simplicity we have dropped the subscript 0

denoting bare scalar fields. In the following scalar fields entering in formulae involving Λ

will be always understood to be bare. The last step makes use of det(AB) = det(A)det(B).

4.3 U(4) superpotential

We now consider the O3− case, i.e. the U(4) gauge theory with three chiral multiplets in

the 6. Setting k0 = 0, k1 = 1, N0 = 0, N1 = 4 in (3.9) the surviving fields can be written as

ϕ
I[uv]
(0) , ϕ̄I[uv](0) , aµ(0) , χ̄I(−2) , χI

(+2) , Dc
(0) , wα̇

u(+1) , w̄u
α̇(−1)

θ0
α(0) , θ̄0α̇(0) , θ̄α̇I(−1) ; ν0

u(+1) , ν̄0u
(−1) , νIu

(+1) (4.23)

with u = 1, ..4 and the charge q under U(1)k1
is denoted in parentheses. Plugging into (3.3)

(after taking α′ → 0) one finds

S = SB + SF (4.24)

where

SF =
(

ν̄0uwuα̇ + w̄u
α̇ν0

u

)

θ̄α̇
0 + νIu wuα̇ θ̄α̇

I + χ̄Iν
0
uνIu + νIuϕ̄Iuvν̄

0v

SB = w̄u
α̇ϕ̄IuwϕIwvwα̇

v + ϕIuvwα̇
uwvα̇χ̄I + ϕ̄Iuvw̄

uα̇w̄v
α̇χI + w̄uα̇wuα̇χ̄Iχ

I + Dc w̄σcw (4.25)

As before we omit numerical coefficients. The integral over Dc leads to a δ function on the

ADHM constraints ∫

d8wd8w̄δ3(w̄σcw) =

∫

dρ ρ9d12U (4.26)

In the r.h.s of (4.26) we have solved the ADHM constraints in favour of w and U defined

by

wuα̇ = ρUuα̇ w̄uα̇ = ρ Ūuα̇ Ūuα̇Uuβ̇ = δα̇
β̇

(4.27)

The coset representatives Uα̇u parameterizes the SU(4)/SU(2) orientations of the instanton

inside the gauge group. The fermionic integrations lead to the determinant

∆F = ρ8 ǫu1u2u3u4ǫv1v2u5u6ǫv3v4v5v6Xu1v1u2v2
Xu3v3u4v4

Yu5v5
Yu6v6

(4.28)

with

Xu1v1u2v2
= ǫI1I2I3χ̄I1ϕ̄I2u1v1

ϕ̄I3u2v2

Yuv = U α̇
u Uα̇u (4.29)
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The bosonic integrals are more involved. For arbitrary choices of the scalar VEV’s ϕ̄I

and ϕI , even along the flat directions of the potential, the integration over U represents a

challenging if not a prohibitive task. Fortunately choosing ϕIuv = ϕηIuv , ϕ̄Iuv = ϕ̄ηIuv,

the full ϕ-dependence can be factorized. SU(4) gauge and SU(3) ‘flavor’ invariance can

then be used to recover the full answer. After the rescaling

ρ2 → ρ2/(ϕϕ̄) χI → ϕχI χ̄I → ϕ̄χ̄I (4.30)

The integral becomes

SW = Λ9 I

∫

d4x0d
2θ

1

ϕ6
(4.31)

with I the ϕ-independent integral

I =

∫

dρρ9 d12U d3χd3χ̄∆F e−S̃B

S̃B = −ρ2(1 + ηIuvYuvχI + η̄IuvȲ
uvχI + χ̄Iχ

I) (4.32)

and ∆F given again by (4.28) but now in terms of

Xu1v1u2v2
= ǫI1I2I3χ̄I1 η̄I2u1v1

η̄I3u2v2

Finally one can restore the gauge covariance of (4.31) by noticing that there is a unique

SU(4)c × SU(3)f singlet in the symmetric tensor of six ϕI

det3×3[ǫu1..u4
ϕIu1u2ϕJu3u4 ]

Therefore one can replace ϕ6 in (4.31) by this singlet. The superpotential follows after

replacing ϕI → ΦI

SW = c

∫

d4xd2θ
Λ9

det3×3[ǫu1..u4
ΦIu1u2ΦJu3u4 ]

(4.33)

where c is a computable non-zero numerical coefficient.

5. ED3-instantons

Let us now consider the ED3-D3 system. We restrict ourselves to the compact case T 6/Z3

and consider the ED3 fractional instanton wrapping a four-cycle Cn inside T 6/Z3. We start

by considering the O3−-orientifold projection. The zero modes of the Yang-Mills fields in

the instanton background can be described as before in terms of open strings with at least

one end on the ED3. Open strings connecting ED3 and D3 branes have 8 Neumann-

Dirichlet directions therefore the zero-mode dynamics of the ED3-D3 system is equivalent

to that of the D7-D(-1) bound state. The instanton action can be found starting from that

of the N = (8, 0) sigma model describing the low energy dynamics of a D1-D9 bound state

in type I [65] reduced down to zero dimensions. In flat space the D(-1)-D7 action reads

S = trk

[

1

g2
0

Sg + SK + SD

]

(5.1)
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with

Sg = −[χ, χ̄]2 + Θ̃ȧχΘ̃ȧ + DcDc

SK = −[χ,Xm][χ̄,Xm] + Θaχ̄Θa + ν(χ + ϕ)ν

SD = Θ̃ȧXmΓm
ȧaΘ

a + DcΓ̂c
mn[Xm,Xn] (5.2)

with m = 1, . . . , 8v , a = 1, . . . , 8s, ȧ = 1, . . . , 8c, c = 1, , . . . , 7. We denote by ϕ =

mI(Cn)ϕI , the gauge scalar parametrizing the position of the D3-brane along the direction

perpendicular to the 4-cycle Cn. Here Γm
ȧa, Γ̂c

mn are gamma matrices of SO(8) and SO(7)

respectively. The introduction of the auxiliary fields Dc has broken the manifest SO(8)

invariance of the action that will be further broken by the Z3-projection. In (5.2), Xm

and χ, χ̄ describe the position of the D(-1)-instanton in the directions longitudinal and

perpendicular to the D7-brane respectively while Θa, Θ̃ȧ are the fermionic superpartners

grouped according to the their chirality along the Dirichlet-Dirichlet χ-plane. Unlike the

D(-1)-D3 case, in the case of 8 Neumann-Dirichlet directions Ω acts in the same way on

the D(-1) and D7 Chan-Paton indices. This implies that Dc transform in the adjoint of

SO(k) if we take the D7 gauge symmetry to be SO(N). In addition I acts as

I : Xm → −Xm Θa → −Θa (5.3)

Fields with eigenvalues ΩI = − are then in the following representations of SO(k)×SO(N)

(χ, χ̄,Dc, Θ̃ȧ)
1

2
k(k − 1)

(Xm,Θa)
1

2
k(k + 1)

ν kN (5.4)

Fields even under I transform in the adjoint of SO(k) while odd fields tranform in the

symmetric representation. For k = 1, N = 32 the D(-1)-D7 system or equivalently the

D1-D9 bound state describes the S-dual version of the fundamental heterotic string on T 2.

k > 1 bound states correspond to multiple windings of the heterotic string [65].

The field Dc implements the one-real D and three complex F flatness conditions

V = −
1

g2
0

7
∑

c=1

DcDc = −g2
0

8
∑

m,n=1

[Xm,Xn]2 = 0 (5.5)

with

Dc = −
1

2
g2
0Γ

c
mn[Xm,Xn] (5.6)

An explicit choice of Γ matrices in D = 7 is given by (a = 1, 2, 3)

Γa
8×8 = iσ1 ⊗ ηa

4×4 Γa+3
8×8 = iσ3 ⊗ η̄a

4×4 Γ7
8×8 = iσ2 ⊗ 14×4 (5.7)

As in section 3, Z3 acts on both spacetime and Chan-Paton indices. Chan-Paton indices

decompose as N → N0 + N1 + N̄1 and k → k0 + k1 + k̄1. Spacetime indices on the other
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hand decompose as

8v = 4 + 2ω + 2ω̄

8s = 2 + 2ω + 4ω̄

8c = 2 + 2ω̄ + 4ω

7 = 3 + 2ω + 2ω̄ (5.8)

In addition χ, ν transform with eigenvalue ω under Z3. Combining with (5.4) one finds theZ3-invariant components

χ, χ̄
1

2
k1(k1 − 1) + k0k̄1 + h.c.

Dc 3

(

1

2
k0(k0 − 1) + k1k̄1

)

+ 2

[

1

2
k1(k1 − 1) + k0k̄1 + h.c.

]

Θ̃ȧ 2

[

1

2
k0(k0 − 1) + k1k̄1

]

+ 2

[

1

2
k̄1(k̄1 − 1) + k0k1)

]

+4

[(

1

2
k1(k1 − 1) + k0k̄1

)]

Xm 4

[

1

2
k0(k0 + 1) + k1k̄1

]

+ 2

[

1

2
k1(k1 + 1) + k0k̄1 + h.c.

]

Θa 2

[

1

2
k0(k0 + 1) + k1k̄1

]

+ 2

[

1

2
k1(k1 + 1) + k0k̄1)

]

+4

[(

1

2
k̄1(k̄1 + 1) + k0k1

)]

ν k0N̄1 + k1N1 + k̄1N0 (5.9)

5.1 D3-ED3 one-loop vacuum amplitudes

ED3 generated superpotentials can be computed following the same steps as in section 4.1.

The disk amplitude can be written as

e〈1〉D = e2πiknτ̃n τ̃n = i
4πV4(Cn)

g2
n α′ −2

+

∫

Cn

(C4 + C0 ∧ R ∧ R) (5.10)

τ̃n describes the coupling of closed string moduli to the ED3 instanton wrapping the 4-cycle

Cn with volume V4(Cn). We remark that closed string states in the Z3-twisted sectors flow

in the ED3-ED3 cylinder amplitude and therefore τ̃n is function of both untwisted and

twisted closed twisted moduli. This is not surprising since the volume of the cycle depends

also on the volume of the exceptional cycles that the ED3 wraps.
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The annulus and Möbius amplitudes are given by

AED3,D3 =
2

12

∑

α,β

cαβ
η3

ϑ[αβ ]

ϑ[
α+ 1

2

β ]2

ϑ[01
2

]2
×

×






2trγθ,ktrγθ,N

ϑ[
α+ 1

2

β+h1
]2

ϑ[01
2
+h1

]2
ϑ[αβ−2h1

]

ϑ̂[
1

2

1

2
−2h1

]
+ trγ1,ktrγ1,N

ϑ[
α+ 1

2

β ]2

ϑ[01
2

]2
ϑ[αβ ]

η3







= −
1

2
k0N1 −

1

2
k1(N0 + N1) + . . .

MED3 = −
1

12

∑

α,β

cαβ
η3

ϑ[αβ ]

ϑ[α
β+ 1

2

]2

ϑ̂[
1

2

0 ]2
×

×






2trγθ2,k

ϑ[α
β+ 1

2
+h1

]2

ϑ̂[
1

2

0+h1
]2

ϑ[αβ−2h1
]

ϑ̂[
1

2

1

2
−2h1

]
+ trγ1,k

ϑ[α
β+ 1

2

]2

ϑ̂[
1

2

0 ]2

ϑ[αβ ]

η3







= 3k0 + k1 + . . . (5.11)

The origin of the various contributions is the same as those in the D(-1)-D3 system. Now

the D3-ED3 open strings have 8 Neumann-Dirichlet directions explaining the extra 1
2 twists

in the annulus amplitude. On the other side, the I projection accounts for the 1
2 -shift in

the Möbius amplitude. Notice that unlike the D(-1)-D3 case, the unprojected amplitude

tr1 now gives a non-trivial contribution.

Collecting the contributions from (5.11) one finds

Λ̃knbn = µknbn e〈1〉D+〈1〉A+〈1〉M = µknbn e2πiknτ̃n(µ) (5.12)

with

τ̃n(µ) = τ̃n −
bn

2πi
ln

µ

µ0
(5.13)

and

A0 + M0 = knbn =
1

2
k0(6 − N1) +

1

2
k1(2 − N0 − N1) (5.14)

The interpretation of the bn as the one-loop β function coefficients of the τ̃n coupling,

though tantalizing, is not clear to us. We will now check that knbn reproduces the right

scale dependence of the instanton measure. The scaling of the various instanton moduli

follows from (5.2):

D, g0 ∼ M2
s χ, χ̄, ϕ ∼ Ms Xm ∼ M−1

s

ν, Θa ∼ M−1/2
s Θ̃ȧ ∼ M3/2

s (5.15)

Collecting from (5.9) the number of degrees of freedom entering in the instanton su-
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permoduli measure one finds
∫

M

e−Sk,N ∼ M−knbn
s

knbn = −2nD − nχ + nX +
3

2
nΘ̃ −

1

2
nΘ −

1

2
nν

=
1

2
k0(6 − N1) +

1

2
k1(2 − N0 − N1) (5.16)

As in the previous case we write the instanton generated superpotential as the moduli

space integral

SW = Λ̃knbn

∫

M

e−Sk,N−Sϕ =

∫

d4x0d
2θ Λ̃knbn ϕ−knbn+3 (5.17)

After promoting ϕ → Φ and x0, θα to the measure of the superspace one finds the ED3

generated superpotential

SW =

∫

d4xd2θ Λ̃knbn Φ−knbn+3 (5.18)

The main difference with respect to the D(-1) instantons is that now ϕ enters into Sϕ (5.2)

only through the coupling to the ν-fermions. This implies that in order to get a non zero

result from the fermionic integral in (5.17) only the ν’s and the two fermionic zero modes

θα ∈ Θa should survive the orientifold projections. From (5.9) one can easily see that this

implies k0 = 1, k1 = 0. The same counting shows that no solutions are allowed in the

Sp(N) case.

5.2 The superpotential

Here we evaluate the instanton moduli space integral for the SO(N0) × U(N1) case. From

our analysis above the relevant cases are k0 = 1, k1 = 0.

The surviving fields in (5.9) are

θα ∈ Θa xµ
0 ∈ Xm νu (5.19)

with u = 1, . . . N1. The instanton action reduces to

S = νuϕuvνv (5.20)

The superpotential is then given by the integral

SW = Λ̃−
N1

2
+3

∫

d4x d2θ dN1ν e−νϕν (5.21)

After integration over ν and lifting ϕ → Φ to the superfield one finds

SW = c Λ̃−
N1

2
+3

∫

d4x d2θ ǫu1....uN1
Φu1u2Φu3u4 . . . ΦuN1−1uN1 (5.22)

where c is a non vanishing numerical constant. Notice that the result is non-trivial only

when N1 is even. The superpotentials (5.22) are non-renormalizable for N1 > 6 and grow
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for large vacuum expectation values where the low energy approximation breaks down.

The only exceptions are

Majorana masses U(4) + 3

Yukawa couplings SO(2) × U(6) + 3 ( , ¯) + 3 (•, ) (5.23)

Notice that both instanton generated Yukawa couplings involve only the matter in the

antisymmetric representation.

6. ADS superpotentials: a general analysis

Here we consider a general N = 1 gauge theory with gauge group U(N) and a nAdj, nf/n̄f ,

nS/n̄S , nA/n̄A number of chiral multiplets in the adjoint, fundamental, symmetric and

anti-symmetric representations (and their complex conjugates) respectively.

The cubic chiral anomaly, one-loop β function and number of fermionic zero modes in

the instanton background of the gauge theory can be written as

Ianom = nf− + nS−(N + 4) + nA−(N − 4) = 0 (6.1)

β1−loop = 3N − NnAdj −
1

2
nf+ −

1

2
nS+(N + 2) −

1

2
nA+(N − 2)

dimMF = k [2N + 2NnAdj + nf+ + nS+(N + 2) + nA+(N − 2)]

with

nf± = nf ± n̄f nS± = nS ± n̄S nA± = nA ± n̄A (6.2)

The condition for an Affleck, Dine and Seiberg like superpotential [16, 17] to be generated

was determined in section 4.1 to be

dimMF = 2kβ − 4 (6.3)

Combining (6.1) and (6.3) one finds

β1−loop = 2N +
1

k
(6.4)

nf− = −nS−(N + 4) − nA−(N − 4)

nf+ = 2N −
2

k
− 2NnAdj − nS+(N + 2) − nA+(N − 2)

Remarkably the β function in a theory admitting an instanton generated superpotential

depends only on the rank of the gauge group. A simple inspection shows that a superpo-

tential is generated only for k = 1 and nAdj = 0. The complete list follows from a scan of

any choice of nS±,nA± such that n+ ≥ |n−| and n+ ≥ 0. One finds

U(N) + Nf ( + ¯ ) Nf ≤ N − 1

U(N) + + (N − 4)¯ + Nf ( + ¯ ) Nf ≤ 2

U(4) + 2 + Nf ( + ¯ ) Nf ≤ 1

U(4) + 3

U(5) + 2 + 2¯ (6.5)
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The inequalities are saturated for gauge theories satisfying (6.3) and (6.4), while the lower

cases are found by decoupling quark-antiquark pairs via mass deformations.

The generalization to SO(N)/Sp(N) gauge groups is straightforward. In these cases

there is no restriction coming from anomalies since representations are real. The β function

and the number of fermionic zero modes in the instanton background are given by

β1−loop =
3

2
(N ± 2) −

1

2
nf −

1

2
nS(N + 2) −

1

2
nA(N − 2)

dimMF = k [N ± 2 + nf + nS(N + 2) + nA(N − 2)]

with upper sign for Sp(N) and lower sign for SO(N) gauge groups. Imposing (6.3) one

finds

β1−loop = N ± 2 +
1

k
(6.6)

nf = N ± 2 −
2

k
− nS(N + 2) − nA(N − 2)

The list of solutions is even shorter

SO(N) + Nf Nf ≤ N − 3 k = 2

Sp(N) + Nf Nf ≤ N k = 1

Sp(N) + + 2 k = 1

(6.7)

Notice that k = 1, respectively k = 2, are the basic instantons in Sp(N), respectively

SO(N), since the instanton symmetry groups are in these cases SO(k), respectively Sp(k).

7. Conclusions

In the present paper, we have given a detailed microscopic derivation of non-perturbative

superpotentials for chiral N = 1 D3-brane gauge theories living at Z3-orientifold singu-

larities. We considered both unoriented projections leading to SO(N1 − 4) × U(N1) and

Sp(N1 + 4)×U(N1) gauge theories with three generations of chiral matter in the represen-

tations ( , ¯) + (•, ) and ( , ¯) + (•, ) respectively.

The U(4) case was studied in details in [49] and describes the local physics of type I

theory near the origin of T 6/Z3 with SO(8) × U(12) gauge group broken by Wilson lines.

In the present T-dual setting, there are two sources of non-perturbative effects: D(-1) and

ED3 instantons. The former realize the standard gauge instantons and lead to Affleck, Dine

and Seiberg like superpotentials. The latter lead to Majorana masses or non-renormalizable

superpotentials and were ignored till very recently [18 – 23, 15, 49].

Our explicit instanton computations confirm the form of ADS and stringy superpoten-

tials proposed in [49] on the basis of holomorphicity, dimensional analysis U(1) anomaly

and flavour symmetry. We show that ADS superpotentials are generated only for the U(4)

and Sp(6)×U(2) gauge theories in the Z3-orientifold list. The precise form of the superpo-

tential is derived from an integration over the instanton super-moduli space. Like in [15],
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the β function running of gauge couplings are reproduced from vacuum amplitudes given

in terms of annulus and Möbius amplitudes ending on the instantons. The same analysis

is performed for “stringy instantons” generated by Euclidean ED3-branes (dual to ED1-

strings in type I theory) wrapping holomorphic four-cycles on T 6/Z3. A detailed micro-

scopic analysis of the multi-instanton super-moduli space encompasses massless open string

states with a least one end on the ED3-instanton. We show the generation of Majorana

mass terms for the open string chiral multiplets in the U(4) case, Yukwa couplings for the

SO(2)×U(6) gauge theory and non-renormalizable superpotentials for SO(N0)×U(N0 +4)

gauge theories. The field theory interpretation of the β function coefficients generated by

the one-loop vacuum amplitudes for open strings ending on the ED3-instantons is one of

the most interesting open question left by our instanton super-moduli space analysis. As

previously observed, the invariance under anomalous U(1)’s results from a detailed balance

between the charges of the open strings involved and the axionic shift of a closed string

R-R modulus from the twisted sector.

Our present analysis has some analogies with the recent ones performed in [18 – 23,

15] which have focussed on ED2-branes at D6-brane intersections. As stressed in [49],

one immediate advantage of the viewpoint advocated here is the consistency of the local

description. Indeed, imposing twisted tadpole cancellation [34, 35] the models presented

here and all closely related settings of D-branes at singularities (not necessarily of theZn kind) give rise to anomaly free theories, while this is not necessarily the case for the

‘local’ models with intersecting D-branes. We can envisage the possibility of extending our

analysis to other Zn singularities [55, 56] or even to Gepner models [66 – 68] where many

if not all ingredients, such as the brane actions from gauge kinetic functions including

one-loop threshold effects [69 – 72], are available.

In the present paper we have not addressed phenomenological implications of the

stringy instanton effects we have analyzed in detail. We hope to be able to investigate

these issues in this or similar contexts with D-branes at singularities, where the rigidity of

the cycles is well understood and allows for the correct number of fermionic zero-modes.

Clearly additional (closed string) fluxes neeeded for moduli stabilization [73, 74] may change

some of our present conclusions.
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[55] G. Aldazabal, L.E. Ibáñez, F. Quevedo and A.M. Uranga, D-branes at singularities: a

bottom-up approach to the string embedding of the standard model, JHEP 08 (2000) 002

[hep-th/0005067].

[56] M. Buican, D. Malyshev, D.R. Morrison, H. Verlinde and M. Wijnholt, D-branes at

singularities, compactification and hypercharge, JHEP 01 (2007) 107 [hep-th/0610007].

– 23 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB588%2C119
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB588%2C119
http://arxiv.org/abs/hep-th/0402105
http://jhep.sissa.it/stdsearch?paper=11%282006%29057
http://arxiv.org/abs/hep-th/0605225
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB385%2C96
http://arxiv.org/abs/hep-th/9606169
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB528%2C73
http://arxiv.org/abs/hep-th/9711201
http://jhep.sissa.it/stdsearch?paper=04%281999%29020
http://arxiv.org/abs/hep-th/9903051
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB586%2C287
http://arxiv.org/abs/hep-th/0006049
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB595%2C63
http://arxiv.org/abs/hep-th/0010091
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C20%2CS373
http://arxiv.org/abs/hep-th/0301032
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=FPYKA%2C52%2C200
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=FPYKA%2C52%2C200
http://arxiv.org/abs/hep-th/0310001
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ARNUA%2C55%2C71
http://arxiv.org/abs/hep-th/0502005
http://arxiv.org/abs/hep-th/0610327
http://arxiv.org/abs/hep-th/0702015
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB278%2C769
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB289%2C319
http://jhep.sissa.it/stdsearch?paper=02%282000%29030
http://arxiv.org/abs/hep-th/9907041
http://jhep.sissa.it/stdsearch?paper=10%282003%29065
http://arxiv.org/abs/hep-th/0304115
http://jhep.sissa.it/stdsearch?paper=02%282006%29060
http://arxiv.org/abs/hep-th/0512039
http://jhep.sissa.it/stdsearch?paper=08%282000%29002
http://arxiv.org/abs/hep-th/0005067
http://jhep.sissa.it/stdsearch?paper=01%282007%29107
http://arxiv.org/abs/hep-th/0610007


J
H
E
P
0
7
(
2
0
0
7
)
0
3
8

[57] M.R. Douglas, Branes within branes, hep-th/9512077.

[58] M.F. Atiyah, N.J. Hitchin, V.G. Drinfeld and Y.I. Manin, Construction of instantons, Phys.

Lett. A 65 (1978) 185.

[59] N. Dorey, T.J. Hollowood, V.V. Khoze, M.P. Mattis and S. Vandoren, Multi-instanton

calculus and the AdS/CFT correspondence in N = 4 superconformal field theory, Nucl. Phys.

B 552 (1999) 88 [hep-th/9901128].

[60] E.G. Gimon and J. Polchinski, Consistency conditions for orientifolds and d-manifolds, Phys.

Rev. D 54 (1996) 1667 [hep-th/9601038].

[61] M. Bianchi and J.F. Morales, RG flows and open/closed string duality, JHEP 08 (2000) 035

[hep-th/0006176].

[62] F. Fucito, J.F. Morales and A. Tanzini, D-instanton probes of non-conformal geometries,

JHEP 07 (2001) 012 [hep-th/0106061].

[63] G. Veneziano and S. Yankielowicz, An effective lagrangian for the pure N = 1

supersymmetric Yang-Mills theory, Phys. Lett. B 113 (1982) 231.

[64] T.R. Taylor, G. Veneziano and S. Yankielowicz, Supersymmetric QCD and its massless limit:

an effective lagrangian analysis, Nucl. Phys. B 218 (1983) 493.

[65] E. Gava, J.F. Morales, K.S. Narain and G. Thompson, Bound states of type-I D-strings,

Nucl. Phys. B 528 (1998) 95 [hep-th/9801128].

[66] C. Angelantonj, M. Bianchi, G. Pradisi, A. Sagnotti and Y.S. Stanev, Comments on Gepner

models and type-I vacua in string theory, Phys. Lett. B 387 (1996) 743 [hep-th/9607229].

[67] T.P.T. Dijkstra, L.R. Huiszoon and A.N. Schellekens, Supersymmetric standard model spectra

from RCFT orientifolds, Nucl. Phys. B 710 (2005) 3 [hep-th/0411129].

[68] P. Anastasopoulos, T.P.T. Dijkstra, E. Kiritsis and A.N. Schellekens, Orientifolds,

hypercharge embeddings and the Standard Model, Nucl. Phys. B 759 (2006) 83

[hep-th/0605226].

[69] I. Antoniadis, C. Bachas and E. Dudas, Gauge couplings in four-dimensional type-I string

orbifolds, Nucl. Phys. B 560 (1999) 93 [hep-th/9906039].
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